Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alex H. F. Lee, Zhongyuan Zhou,* Tianhu Li and Albert S. C. Chan

Open Laboratory of Chirotechnology and Department of Applied Biology, and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

Correspondence e-mail: bczyzhou@inet.polyu.edu.hk

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.007 Å R factor = 0.054 wR factor = 0.133 Data-to-parameter ratio = 21.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the crystal structure of the title compound, $C_{10}H_{14}$ -NO₂S₅⁺·Cl⁻, the seven-membered ring adopts a chair conformation. The crystal structure is stabilized by N-H···Cl hydrogen bonds. Received 30 January 2002 Accepted 18 March 2002 Online 28 March 2002

Comment

Varacinium chloride

In the course of our work toward the synthesis of antibiotic varacin A, the title compound, (I), was obtained as an unexpected product in 90% yield. After careful examination of the X-ray crystallographic data and other resources, we believe that we have obtained the antibiotic varacin fortuitously with a new methodology. We propose that the varacin A formed in the reaction reacted with S_8 , generated from the quenching agent $Na_2S_2O_7$, and subsequently afforded compound (I). In fact, a similar equilibrium between varacin and varacin A + S_8 was first reported by Makarieva *et al.* (1995). The first synthetic approach of varacin was reported by Danishefsky & Behar (1993).

A view of the molecule, with atomic labeling, is shown in Fig. 1. The S–S distances (Table 1) are similar to those observed in S₈ (Sato *et al.*, 1995) and the S– Csp^2 distances are comparable to those found in benzopentathiepine (Feher & Engelen, 1979). The seven-membered ring adopts a chair conformation. In the crystal, the molecules are linked by Cl⁻ ions through N–H···Cl hydrogen bonds (Table 2) to form a network structure.

Experimental

To a solution of *N*-Boc-4-ethylamino-6,7-dimethoxy-1,2,3-benzotrithiole 2-oxide (42.0 mg, 0.108 mmol) in THF (5 ml) was added NaI (oven dried, 81.5 mg, 0.540 mmol) in water (3 ml) and 20% ν/ν HClO₄ (2.0 ml) at 273 K. The reaction mixture was kept at 323 K overnight and cooled to room temperature when the reaction was complete. After quenching with saturated aqueous Na₂S₂O₇, the aqueous mixture was extracted with CH₂Cl₂ (3 × 25 ml). The combined organic extracts were washed with water (20 ml) and brine (20 ml) and dried over Na₂SO₄ to give the title compound (24.1 mg, 90%) as a yellow film after rotary evaporation. ¹H NMR δ (CD₃OD):

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids.

7.14 (s, 1H), 3.97 (s, 3H), 3.82 (s, 3H), 3.35 (m, 1H), 3.25 (m, 1H), 3.16 (*m*, 2H); 13 C NMR δ (CD₃OD) 156.67, 151.24, 141.94, 140.29, 136.31, 62.18, 57.03, 41.67, 35.07; EIMS m/z (%) 381 (5), 343 (3), 342 (23), $340 [(M-Cl)^+, 100], 323 (54), 276 (20), 259 (34), 226 (17).$ The title compound was then recrystallized from a CH₂Cl₂-hexane (8:1) solvent system.

Crystal data

$C_{10}H_{14}NO_2S_5^+ \cdot Cl^-$	$D_x = 1.535 \text{ Mg m}^{-3}$
$M_r = 375.97$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1998
a = 16.891 (3) Å	reflections
b = 10.6971 (16) Å	$\theta = 1-27.5^{\circ}$
c = 9.1959 (13) Å	$\mu = 0.87 \text{ mm}^{-1}$
$\beta = 101.673 \ (4)^{\circ}$	T = 294 (2) K
$V = 1627.2 (4) \text{ Å}^3$	Needle, yellow
Z = 4	$0.28 \times 0.10 \times 0.08 \text{ mm}$
Data collection	
Bruker CCD area-detector	3720 independent reflections
diffractometer	1234 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.083$
Absorption correction: multi-scan	$A = 27.6^{\circ}$
	$v_{max} = 27.0$
(SADABS; Sheldrick, 1996)	$b_{\text{max}} = 27.0$ $h = -16 \rightarrow 21$
(SADABS; Sheldrick, 1996) $T_{min} = 0.778, T_{max} = 0.928$	$b_{\text{max}} = 27.0$ $h = -16 \rightarrow 21$ $k = -13 \rightarrow 13$

H-atom parameters constrained $w = 1/[\sigma^2(F^2) + (0.05P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

S1-C1	1.777 (4)	\$3-\$4	2.054 (2)
S1-S2	2.036 (2)	S4-S5	2.043 (3)
S2-S3	2.051 (2)	\$5-C2	1.773 (5)
C1-S1-S2-S3	-93.78 (17)	\$2-\$1-C1-C2	83.4 (4)
S1-S2-S3-S4	73.00 (11)	S1-C1-C2-S5	-4.9(6)
S2-S3-S4-S5	-75.16 (11)	S4-S5-C2-C1	-74.6(4)
S3-S4-S5-C2	93.11 (19)		

Table 2			
Hydrogen-bonding	geometry	(Å.	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{l} \mathbf{M} = \mathbf{H} 1 \mathbf{B} \cdots \mathbf{C} \mathbf{I} 1 \\ \mathbf{M} = \mathbf{H} 1 \mathbf{A} \cdots \mathbf{C} \mathbf{I} 1^{\mathbf{i}} \\ \mathbf{M} = \mathbf{H} 1 \mathbf{C} \cdots \mathbf{C} \mathbf{I} 1^{\mathbf{ii}} \end{array} $	0.89	2.26	3.107 (3)	160
	0.89	2.33	3.129 (4)	149
	0.89	2.27	3.098 (3)	154

Symmetry codes: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$.

All the H atoms were placed in geometrically calculated positions and included in the final refinement in the riding model approximation. As a result of the small size and poor diffraction quality of the crystal, the ratio of observed to unique reflections is low (33%).

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SHELXTL-NT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

We thank the Hong Kong Polytechnic University ASD Fund for financial support of this research.

References

- Danishefsky, S. J. & Behar, V. (1993). J. Am. Chem. Soc. 115, 7017-7018.
- Feher, F. & Engelen, B. (1979). Z. Anorg. Allg. Chem. 452, 37-42.
- Makarieva, T. N., Stonik, V. A., Dmitrenok, A. S., Grebnev, B. B., Isakov, V. V. & Rebachyk, N. M. (1995). J. Nat. Prod. 58, 254-258.
- Sato, R., Ogawa, S., Saito, S., Kikuchi, T., Kawai, Y. & Niizuma, S. (1995).
- Chem. Lett. 4, 321-322.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1995). SMART (Version 5.0) and SHELXTL-NT (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.